Obrada signala u vremenskofrekvencijskoj domeni

Doc. dr. sc. Damir Seršić http://ts.zesoi.fer.hr

Vremensko-frekvencijske obrade

- Pod pojmom *spektar signala* redovito se podrazumijeva Fourierov spektar.
- Spektar snage slučajnih procesa također je definiran korištenjem Fourierove transformacije.
- Fourierov spektar je mjera izrazito prilagođena signalima nepromjenjivih svojstava, odnosno stacionarnim slučajnim procesima.

Fourierova transformacija

• Definicija:

$$\int_{-\infty}^{+\infty} \underbrace{x(t)}_{signal} \underbrace{e^{-j\omega t}}_{harmonijska} dt = X(\omega)$$

- X(ω) možemo promatrati kao mjeru sličnosti između x(t) i e^{-jωt}.
- Ako je analizirana funkcija *x*(*t*) harmonijska funkcija, sličnost će biti velika.

FT na vremenskom otvoru - STFT

- Konstruirajmo transformaciju s dobrim svojstvima lokalizacije u obadvije domene.
- Umjesto $e^{j\omega t} \rightarrow g(t-\tau) e^{j\omega t}$
- g(t) lokalni analizirajući otvor željenih svojstava u obje domene, τ pomak.
- Rezultat: STFT. $X(\tau, \omega) = \int_{-\infty}^{+\infty} x(t)g(t-\tau) e^{-j\omega t} dt$

- Analizirani fenomen lokaliziran u obje domene.
- Rezultat ovisi i o signalu i o analizirajućem otvoru.
- Otvor ima konstantna svojstva na T-F ravnini, zadanu rezoluciju - kompromis između vremena i frekvencije.

STFT spektar snage slučajnog procesa

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{E[|X_T(\omega)|^2]}{2T}$$

- Spektar snage SP je mjera usrednjena u vremenu.
- $X_{\rm T}(t)$ zamijenimo produktom $X(t) g(t-\tau)$ i izračunamo spektrogram kao funkciju τ i ω : $|X(\tau, \omega)|^2$.
- STFT spektar snage slučajnog procesa dobivamo primjenom operatora očekivanja (a bez vremenskog usrednjavanja):

$$S_{XX}(\tau,\omega) = E[|X(\tau,\omega)|^2].$$

• Rezultat: STFT spektar prati svojstva nestacionarnog procesa.

Problem inverzije STFT

· Fourierov transformacijski par:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} dt$$

- Postojanje inverzne formule jamči da nije došlo do gubitka informacije.
- Fourierova transformacija nije redundantna (ortogonalna je) i čuva energiju signala (uniformna).
- Postoji li inverzna STFT? Za koje vremenske otvore?

Inverzna STFT

 STFT jednodimenzionalnog signala je ploha X(τ, ω): razlaganje je redundantno!

$$x(t) = \frac{1}{\|g\|^2} \int_{-\infty-\infty}^{+\infty+\infty} X(\tau,\omega) g(t-\tau) e^{j\omega t} d\omega d\tau$$

- Inverzija je moguća, ako je norma odabranog otvora ||g|| različita od nule.
- Svaki g(t) konačne energije je dobar!
- Poželjan izbor ||g||=1, uz dobra lokalizacijska svojstva u vremenu i frekvenciji.

Diskretizacija STFT

 Da li je razlaganje bez gubitka informacije, odnosno da li se iz diskretnog skupa koeficijenata X[m, n] može restaurirati analizirani signal x(t)?

$$x(t) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} X[m,n] \cdot g_{m,n}(t)$$

- Rekonstrukcijska (inverzna) formula poznata je pod nazivom Gaborova ekspanzija signala.
- X[m,n] je mjera sadržaja x(t) na lokaciji mT, $n\Omega$.
- Kada je moguća rekonstrukcija?

Nužan uvjet rekonstrukcije

- $T\Omega > 2\pi$ podotipkavanje – rekonstrukcija nije moguća.
- $T\Omega = 2\pi$ granični (kritični) slučaj
 - moguća rekonstrukcija,
 - ne mogu se postići dobra svojstva u obje domene.
- $T\Omega < 2\pi$ nadotipkavanje
 - moguća rekonstrukcija,
 - redundantno razlaganje,
 - mogu se postići dobra svojstva u obje domene.

Dovoljan uvjet rekonstrukcije

• Rekonstrukcija je moguća i to na numerički stabilan način ako je $T\Omega \le 2\pi i$ ako postoje dvije konstante A i B za koje vrijedi:

$$\begin{split} \mathbf{A} \underbrace{\|\mathbf{x}\|^2}_{energija \ signala} &\leq \sum_{\substack{m,n \\ energija \ koeficijenata}} \|\mathbf{X}[m,n]\|^2 \leq \mathbf{B} \underbrace{\|\mathbf{x}\|^2}_{energija \ signala} \\ \mathbf{0} < \mathbf{A} \leq \mathbf{B} < \infty \end{split}$$

 Razlaganje može biti i redundantno ili neuniformno, a konstante A i B zadaju energetski okvir transformacije (*engl. frame*).

Wavelet transformacija

- STFT postiže lokalizaciju u obadvije domene, ali i dalje ima linearnu skalu.
- Wavelet funkcija $\psi^{a,\tau}(t) = \frac{1}{\sqrt{|a|}} \psi\left(\frac{t-\tau}{a}\right)$ ("valić")

 $\Psi(t)$ – *mother wavelet* (prototip wavelet funkcije)

- au vremenski linearni pomak
- a skala

$$\frac{1}{\sqrt{|a|}} - \text{zbog normizacije} \quad \left(\left\| \psi^{a,r} \right\| = \left\| \psi \right\| \right)$$

Wavelet transformacija

• Kontinuirana wavelet transformacija (CWT):

$$X(\tau, a) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{+\infty} x(t) \psi\left(\frac{t-\tau}{a}\right) dt$$

- Funkcija razlaganja nije ograničena samo na kompleksnu harmonijsku funkciju e^{jαt}.
- "Valić" $\psi(t)$ osigurava željena svojstva razlaganja.
- Analizirajuću funkciju pomičemo za τ, stežemo ili rastežemo za skalu *a* i uspoređujemo s *x*(*t*).

Skalogram slučajnog procesa

- Mjeru $|X(\tau, a)|^2$ nazivamo skalogram.
- Skalogram slučajnog procesa dobivamo primjenom operatora očekivanja:

$$S_{XX}(\tau,a) = E[|X(\tau,a)|^2].$$

 Rezultat: skalogram prati svojstva nestacionarnog procesa, uz dobra svojstva Wavelet transformacije.

Inverzna CWT

$$x(t) = \frac{1}{C_{\psi}} \int_{-\infty-\infty}^{+\infty+\infty} \frac{1}{a^2} X(\tau, a) \psi^{a, \tau}(t) da dt$$
$$\underbrace{C_{\psi}}_{uvjet C_{\psi} < \infty - uvjet C_{\psi} < \infty - uvjet prihvatljivosti}^{+\infty} d\omega$$

- Inverzija postoji ako je zadovoljen uvjet prihvatljivosti (*engl. admissibility condition*).
- Nužan uvjet $\Psi(0) = 0$: $\psi(t)$ ne smije sadržavati istosmjernu komponentu.

Neki zanimljivi $\psi(t)$

- Najsličniji STFT-u je kompleksni Mallatov wavelet: $\psi(t) = e^{-\frac{t^2}{2}} e^{-j\varphi}$
- Precizniji izraz (bez istosmjerne komponente) je:

$$\psi(t) = \frac{1}{\sqrt[4]{\pi}} \left(e^{-\frac{t^2}{2}} - e^{\frac{-\xi_0}{2}} \right) e^{-\frac{t^2}{2}}$$

• U praksi za $\xi_0 = 5$ ili veći drugi član u zagradi je zanemariv (tj. kad ima dovoljno valića).

Diskretna WT

$a = a_0^m$ $\tau = nT_0 a$ $tj. \tau = nT_0 a_0^m$	 logaritamska podjela u skali (frekvenciji) pomak usklađen s iznosom skale
Sve zajedno	$\psi_{m,n}(t) = \frac{1}{\sqrt{a_0^m}} \psi\left(\frac{t}{a_0^m} - nT_0\right)$
DWT X[m	$[n,n] = \frac{1}{\sqrt{a_0^m}} \int_{-\infty}^{+\infty} x(t) \psi\left(\frac{t}{a_0^m} - nT_0\right) dt$

Uvjet rekonstrukcije

$$x(t) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} X[m,n] \cdot \psi_{m,n}(t)$$

• Rekonstrukcija je moguća i to na numerički stabilan način ako postoje dvije konstante A i B za koje vrijedi:

$$\mathbf{A} \underbrace{\|x\|}_{energija \ signala} \leq \underbrace{\sum_{m,n} \|X[m,n]\|^2}_{energija \ koeficijenata} \leq \mathbf{B} \underbrace{\|x\|^2}_{energija \ signala}$$

$$0 \leq \mathbf{A} \leq \mathbf{B} \leq \infty$$

 Kod DWT-a ne postoji ekvivalent nužnog uvjeta TΩ≤2π, koji je vrijedio za Gaborovu ekspanziju.

Oktavna DWT

- Kod waveleta se lako mogu pronaći ortogonalne baze s dobrim lokalizirajućim svojstvima u obje domene (što nije bio slučaj s Gaborom).
- Za realizaciju čest izbor je a₀ = 2 tj. oktavna podjela frekvencijske skale.
- Prednost: mogućnost brze realizacije filtarskim slogovima.

$$\psi_{m,n}(t) = \frac{1}{\sqrt{2^m}} \psi \left(\frac{t}{2^m} - nT_0 \right)$$

Realizacija filtarskim slogovima

Kod STFT-a lako smo dobili ekvivalenciju s ekvidistantnim filtrom: Kod waveleta $(a_0=2)$ imat ćemo binarno stablo:

Konvergencija pridruženih funkcija

- Ako pridružene funkcije konvergiraju i ako su limes funkcije zadovoljavajuće (glatke, ...), onda wavelet stablo realizira DWT diskretnih signala.
- Nužan uvjet konvergencije:

$$\widetilde{L}(z)\Big|_{z=-1} = 0, \qquad \frac{1}{\sqrt{2}}\widetilde{L}(z)\Big|_{z=1} = 1$$

• Jedna varijanta dovoljnog uvjeta (Mallat 1989.):

$$\left|\widetilde{L}(\omega)\right| > 0, \qquad \omega < \frac{\pi}{2}$$

DWT wavelet obitelji

- Za primjene su vrlo značajni filtri s konačnim impulsnim odzivom (FIR).
- Obitelji konačnih waveleta:
 - Haar: 1. red, ortogonalni, simetrični, najstariji (1900.);
 - Daubechies: ortonormalni, maks. glatki, nesimetrični;
 - Symlets: ortonormalni, skoro simetrični;
 - Biortogonalni, simetrični (linearne faze), ...

Where to use wavelets??

- compression
- denoising
- · communications

Where to use wavelets??

• JPEG 2000: wavelet-based image compression standard

Reconstructed image after compression at 0.25 b/p using JPEG (left) and JPEG 2000 (right).

Lifting scheme properties

- up to two times less computations
- in-place calculation
- easy to implement time-variant and non-linear PR filter banks
- · possible to realize minimum delay filter banks

2-D wavelets bases

- separable
 - successive 1-D processing of rows and columns
- nonseparable
 - true multidimensional approach
 - higher computational complexity
 - greater flexibility in filter design
 - better adapted to human visual system

Separable wavelet transform

· successive 1-D processing of rows and columns

Conclusion

- · nonseparable filters are preferred
- 2D filters with variable parameters are to be implemented
 - generalisation of adaptive 1-D wavelet filter banks
- · promising results

Parameters

Damir Seršić Miroslav Vrankić

Outline of the presentation

- Introduction
- · Lifting scheme
- Quincunx 2D generalization
- 2D adaptive filter bank
- Adaptation of filter parameters
- · Examples and results
- Conclusion

Introduction

- Proposal: non-separable 2D wavelet filter bank with adaptive filter parameters.
- 2D generalization of previously reported 1D wavelet filter bank with adaptive filter parameters.

FOR MORE INFO... D. Seršić: "A realization of wavelet filter bank with adaptive filter parameters," Proc. of EUSPICO 2000, 10(3):1733-1736

Examples of linear prediction

• 1D linear prediction:

$$P_2(z) = \frac{1}{2} \left(1 + z^{-1} \right)$$

• 2D linear prediction:

$$P_2(z_1, z_2) = \frac{1}{4} \left(1 + z_1^{-1} + z_2^{-1} + z_1^{-1} z_2^{-1} \right)$$

• Update stage: $U_n = 1/2 P_n$.

The idea of adaptation

$$U = u_1 U_2 + u_2 (U_4 - U_2) + u_3 (U_6 - U_4) + \dots$$

- Adaptive update parameters u_1, u_2, u_3, \dots
- Parameters u_m can be chosen to achieve desired number of vanishing moments M of the LP filter.
- Of course, values of u_m are dependent on the previous stage parameters p_n , but...

Dependence of filter parameters

- If $N \ge M$, parameters u_m should be set to value one in order to achieve zero moments.
- Colored values are valid for 1D banks only.
- Moreover, moments are preserved for any value of variable parameters $p_n \neq 0$ and $u_m \neq 0!$

$\{p_1, p_2, p_3, p_4\}$	{1,0,0,0}	{1,1,0,0}	{1,1,1,0}	{1,1,1,1}
<i>u</i> ₁	1	1	1	1
<i>u</i> ₂	3/2	1	1	1
<i>u</i> ₃	5/3	3/2	1	1
u_4	7/4	3/2	3/2	1
	•			

Adaptive wavelet decomposition

• Fixed 2+2, RLS adaptive p_2 , $\lambda = 0.85$.

1-D LSW

- · windowed least squares
- window sizes: N = 3, 6, 9 or 12 samples
- · adapt. area lies in a line
- · over determined set of linear equations

Robust 2-D LSW

- modification of 2-D LSW
- · reduces transition area
- · traces prevalent image characteristics
- choose only M samples inside window...
- · that have least quadratic prediction error
- iterative method

BLUE Method

- Best Linear Unbiased Estimate
- makes adaptation spectrally dependent
- · keeping filter parameters in admissible range
- 3-diagonal weight matrix

