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ABSTRACT 
In this paper, an efficient realization of the two-channel wavelet 
filter bank with adaptive filter parameters is proposed. Described 
time variant wavelet filter bank is more suitable for analysis of 
non-stationary signals then fixed banks. Basic convergence and 
regularity properties of the limit wavelet functions and scales are 
provided by fixed part of the filter bank. Variable part adapts to 
the analyzed signal. Proposed filter bank combines sub-band 
decomposition and parametric modeling. Realization is based on 
the lifting scheme, derived from a method of fixed wavelet filter 
bank design. Original Lagrange interpolation of samples in the 
time domain is modified to an approximation scheme that is 
recomputed at each step of decomposition. Adaptation criterion is 
calculated from wavelet coefficients, which is under some 
restrictions reproducible on the reconstruction side. Wavelet filter 
banks with adaptive filter parameters can outperform fixed banks 
in a number of applications. 

1 INTRODUCTION 
Analytical properties of wavelet filter banks are closely related to 
the convergence and regularity of limit wavelet functions and 
scales. More zero moments correspond to more regularity, which 
results in better description of smooth and correlated parts of the 
analyzed signal [1][2]. A number of well-known wavelet families 
has been developed, based on criteria such as orthogonality, 
minimum phase, symmetric impulse response, and many others. 
Number of vanishing moments of a fixed filter bank is usually 
chosen as a compromise between filter complexity and desired 
regularity. For a given order, wavelet filters usually have all zeros 
of their frequency response on Nyquist or DC frequency. But, it 
does not necessary result in maximum selectivity of the filter bank 
for a given input signal. 

Our goal is to change filter parameters in one or both filters of the 
bank at each step of decomposition, depending on the analyzed 
signal. The two-channel PR filter bank should form wavelet tree or 
wavelet packet tree, so the convergence and some degree of 
regularity must remain. The adaptation criterion should be 
computed from wavelet coefficients, wishfully resulting in more 
compact representation of the analyzed signal. We expect benefits 
of using adaptive filter banks in many applications [6]. 

In section 2 we describe construction of the proposed adaptive 
filter bank. Sweldens 96 [3] proposed a construction of 
biorthogonal wavelet filter banks based on the lifting scheme, 
using interpolation of samples in the time domain. A short review 
of the “cakewalk” construction of wavelets is given in paragraph 
2.1. Even samples are estimated from odds using Lagrange 

interpolation functions of chosen order. In the proposed scheme, 
we consider odd order polynomials corresponding to the even 
length FIR filters. 

In paragraph 2.2 we give the proposed factorization of the 
adjustable lifting step. In section 3 we discuss the adaptation 
criterion, as well as the decomposition results. To ensure 
convergence and minimum regularity, filters are split in the fixed 
and the variable part. Filter parameters change at each step of 
decomposition, so the associated limit wavelet functions and scales 
change, too. We deal with a kind of “generalized” wavelets. Fixed 
vanishing moments plus limitations on variable filter parameters 
ensure convergence and reasonable regularity of decomposition 
functions. 

2 FILTER BANK STRUCTURE 
2.1 Lifting scheme 

The lifting scheme is related to the polyphase representation of 
filter banks, with polyphase matrix factored in a cascade of 
triangular sub-matrices. Each sub-matrix corresponds to one lifting 
or dual lifting step. Its all-ones diagonal form guaranties existence 
of the inverse sub-matrix, even if lifting or dual lifting operators 
are not constant or linear. An inverse sub-matrix is obtained by a 
simple transposition followed by change in sign. It enables easy 
construction of perfect reconstruction time-variant and non-linear 
filter banks. Daubechies and Sweldens 98 [4] show that any two-
band FIR filter bank can be factored in a set of lifting steps, using 
Euclidean algorithm. 
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Figure 1. Two-channel PR filter bank factored in lifting 
and dual lifting steps. 

The polyphase matrix of the filter bank from Figure 1 is factored 
in 2 triangular sub-matrices: 
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In this paper, a class of two-channel biorthogonal and time variant 
PR filter banks is constructed by the lifting scheme. Sweldens 96 
[3] described a lifting scheme design of Deslauriers - Dubuc filter 
banks [5] by interpolation of samples in the time domain. The 
illustration of linear (II) and cubic (IV) case is given below:  
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Linear interpolation Cubic interpolation

d II[k] d IV[k]
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Figure 2. Lagrange interpolation of samples. 

2.2 Adjustable lifting step 

At first, we construct the predictor:  
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Figure 3. Realization of the lifting step. 

Lifting step is realized as a weighted sum of additive components: 
S0(z)=a0⋅S0(z)−a1⋅S1(z)+a2⋅S2(z)−a3⋅S3(z), where:  

)1(
2
1 1

0
−+= zS ,     )1(

16
1 21

1
−− +−−−= zzzS , 

)3223(
256
3 3212

2
−−− +−++−= zzzzzS , 

)595595(
2048

5 432123
3

−−−− +−+−−+−= zzzzzzzS . 

If the multiplying factors {a0, a1, a2, a3} are constant, chosen from 
sets {1,0,0,0}I, {1,1,0,0}II, {1,1,1,0}III, {1,1,1,1}IV we have lifting 
steps SI(z)=S0(z), SII(z)=S0(z)−S1(z), SIII(z)=S0(z)−S1(z)+S2(z), and 
SIV(z)=S0(z)−S1(z)+S2(z)−S3(z). Resulting SI−SIV correspond to 
prediction of odd samples from neighboring even samples using 
linear, cubic, 5th order or 7th order Lagrange interpolation, as 

illustrated in Figure 2. Also, they correspond to 2, 4, 6 or 8 zero 
moments of the associated wavelet function. This scheme can be 
easily extended to more vanishing moments, if needed. 

Now, we split the proposed structure in the fixed and variable part.  
We achieve desired number of vanishing moments by fixing 
factors from a0 to a3. For example, a0 =1 results in 2, or a0=a1=1 
results in 4 vanishing moments (linear or cubic interpolation). 
Then, we use the residual multipliers as parameters that could be 
changed at each step of decomposition. 

It leads to a modified approximation scheme, where prediction 
polynomials are set to minimize error signal derived from d[k], at 
each moment k, on chosen adaptation interval [k−K1, k+K2]. 
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Figure 4. Modified scheme. Approximation polynomials 
do not necessarily contain known points. They are rather 
set to minimize some property of the signal d[k] (e.g., the 
energy of d in some neighborhood of the observed step k). 

2.3 Adjustable dual lifting step 

Now, we construct the update step: 

Xe(z)

D(z)

A(z)

1+z

1/4

z−1 (1−z)2

z−1 (1−z)2

z−1 (1−z)2

b3b2b1

5/24

1/8

3/16

b0

T1(z) T2(z) T3(z)T0(z)

 

Figure 5. Realization of the dual lifting step 

For the moment, let us assume that the lifting step multipliers {ai} 
are chosen from sets I-IV (ones or zeros). In order to provide 
vanishing moments to the scale function, we set the gains bi: 

{ai} → I II III IV 
b0 1 1 1 1 
b1 3/2 1 1 1 
b2 5/3 3/2 1 1 
b3 7/4 3/2 3/2 1 

Table 2.1. Gain bi depends on the actual number of zeros of the 
high-pass filter, unless we fix less or equal number of zeros of the 
low-pass filter. 

An interesting conclusion comes from Table 2.1. If the number of 



zeros of the LP filter (f=Nyquist) is less or equal to the number of 
zeros of the HP filter (f=0), gains bi equal 1 for all i=0−3. Hence, if 
the number of fixed gains ai does not exceed the number of fixed 
gains bi – we have “independent” vanishing moments. Moreover, 
they do not depend on the remaining free parameters. If we need 
more zeros for the LP filter, we can simply swap the position of 
HP and LP filter by reversing signs of all additive components Si 
and Ti.  
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Figure 6. Adaptive wavelet filter bank (analysis part) with 
2+2 vanishing moments and 3+3 free parameters. 

3 ADAPTATION CRITERION AND RESULTS 
We give an example with 2 vanishing moments fixed on both 
filters. Hence, gains a0 and b0 equal 1, and our filter bank is split in 
basic HP and LP channels. For the simplicity, we change only one 
free parameter: b1, while all others are set to zero. Zero locus plot 
of the LP filter is shown in the following figure: 
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Figure 7. Zero locus plots of the LP filter, parameter b1. 

Positive values of b1 are good candidates for achieving desired LP 
frequency response: zeros on the higher half of the unit circle can 
be adjusted to cancel large high frequency components of the 
analyzed signal. On the other hand, large negative values place 
zeros on the lower half of the circle, which is in conflict with 
convergence condition (Mallat, [7]). Both large positive or 
negative values widen the energetic frame bounds of the transform, 
thus making filter bank very far from unitary (more on frames in 
[2]). In practice, the region of acceptable parameter values is 
limited. Limit scale functions for several values of parameter b1 are 
shown in Figure 8. 

Due to decimation, aliasing frequency of the analyzed signal x[k] 
maps to the DC component of the wavelet coefficients d[k]. Signal 
DC is preserved in a[k] coefficients. To avoid its influence on the 
criterion, we use the high-pass filtered wavelet coefficients as the 
error input of the windowed least squares adaptation algorithm 
(illustration in Figure 6). 
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Figure 8. Limit scale functions for different constant 
values of parameter b1. Top left: b1=−1. Top right: b1=0. 
Bottom left: b1=1 (4 zero moments). Bottom right: b1=2. 

We applied the adaptive wavelet filter bank to a synthetic signal 
x[k] composed from 3 sine waves of different frequencies.  
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Figure 9. Top left: analyzed signal x[k] composed from 3 
sine waves (ω = 9π/12, 10π/12, 8π/12). Top right: filter 
parameter b1[k] adapted by the least squares algorithm on 
interval [k−20, k+20]. Bottom right: detail d[k]. Bottom 
right: residual approximation coefficients a[k]. 

The decomposition is almost optimal: filter parameter b1 chosen by 
the adaptation criterion follows the frequency of the analyzed 
signal, while approximation coefficients are turned to zero after the 
adaptation. Scale functions change at each step of decomposition, 
somewhere “in between” of those shown in Figure 8, so the good 
regularity properties remain. 

Figure 10 shows the analysis of the signal x[k] from Figure 9 with 
“skyline” component added. Periodic components of the analyzed 
signal are almost cleared from the approximation coefficients, after 
the adaptation of parameter b1. The skyline component brought 
some variance to b1[k], when compared to decomposition in 
Figure 9. Low-pass filtering of the filter parameter b1 gives 
slightly better decomposition results, which is shown in the left of 
Figure 13. 

If we use real world signals, the unpredictable noise components 
may excel the correlated parts. The consequence is an intensive 
variance of the filters’ parameters. Additional averaging of the 
filter parameters with F(z)=1/10⋅(z5+z4+...+1+...+z−3+z−4) reduces 



the variance and enhances the decomposition properties (the right 
of Figure 13). 
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Figure 10. Upper left: “skyline” signal added to the signal 
x[k] from Figure 9. Upper right: filter parameter b1[k], 
adapted by the filtered least squares algorithm on interval 
[k−20, k+20]. Lower left: approximation coefficients d[k] 
computed using fixed wavelets with 2 zero moments (2,2). 
Lower right: approximation coefficients a[k] computed 
using adaptive wavelets (2, 2+b1). 

In the next example, we fix 2 vanishing moments on both filters 
(a0 = b0 = 1) and change one free parameter in the lifting step: a1. 
All other parameters are set to zero. We analyze a short voice 
signal composed from a consonant followed by a vowel. 
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Figure 11. Left: voice signal x[k]. Right: filter parameters 
a1[k] adapted by the least squares algorithm on interval 
[k−50, k+50]. 
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Figure 12. Spectral contents of detail coeficients |D(ω))|2. 
Left: fixed filter bank (2,2). Right: adaptive bank (2+a1, 2). 

Adaptive FB reduces the highest frequency components of the 
detail coefficients, while keeping approximation coefficients 

almost unchanged (Figure 12). 
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Figure 13. Left: Approximation coefficients from example 
in Figure 10 computed by averaged filter parameters b1[k]. 
Right: averaged filter parameters a1[k] from Figure 11 

In general, we can reconstruct the analyzed signal from wavelet 
coefficients plus information on filter parameters {ai} and {bi}. 
They can be coded very efficiently. But, if the adaptation criterion 
is causal, e.g. if current parameters are determined exclusively 
from previous wavelet coefficients, the adaptation algorithm can 
be self-reproduced on the reconstruction side. In that case, perfect 
reconstruction does not require filter parameters to be separately 
transferred to the reconstruction side. 

4 Conclusion 
We give an efficient realization of the two-channel adaptive 
wavelet filter bank. Prediction and update filters are implemented 
as a mixed cascade/parallel parallel set of filter sections, where 
each successive section brings the contribution of the higher order 
approximation. A set of filter parameters is fixed and determines 
the desired number of zero moments. Free parameters change at 
each step of decomposition or reconstruction. We used the least 
square error criterion, computed from filtered wavelet coefficients. 
Adaptive filter bank is applied on a synthetic signal. Wavelet 
coefficients get close to what we expect to be an optimal 
representation of the analyzed signal. Real world signals usually 
contain non-correlated components, inherent to the signal or 
caused by additive noise. They cause intensive variance of the free 
parameters, which can be handled by averaging. Described time 
variant wavelet filter bank is more suitable for analysis of non-
stationary signals then fixed banks. It can outperform fixed 
wavelets in many applications.  
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